Abstract

BackgroundRegular loading of tendons may counteract the negative effects of aging. However, the influence of strength training loading magnitude on tendon mechanical properties and its relation to matrix collagen content and collagen cross-linking is sparsely described in older adults. The purpose of the present study was to compare the effects of moderate or high load resistance training on tendon matrix and its mechanical properties.MethodsSeventeen women and 19 men, age 62–70 years, were recruited and randomly allocated to 12 months of heavy load resistance training (HRT), moderate load resistance training (MRT) or control (CON). Pre- and post-intervention testing comprised isometric quadriceps strength test (IsoMVC), ultrasound based testing of in vivo patellar tendon (PT) mechanical properties, MRI-based measurement of PT cross-sectional area (CSA), PT biopsies for assessment of fibril morphology, collagen content, enzymatic cross-links, and tendon fluorescence as a measure of advanced glycation end-products (AGEs).ResultsThirty three participants completed the intervention and were included in the data analysis. IsoMVC increased more after HRT (+ 21%) than MRT (+ 8%) and CON (+ 7%) (p < 0.05). Tendon stiffness (p < 0.05) and Young’s modulus (p = 0.05) were also differently affected by training load with a reduction in CON and MRT but not in HRT. PT-CSA increased equally after both MRT and HRT. Collagen content, fibril morphology, enzymatic cross-links, and tendon fluorescence were unaffected by training.ConclusionDespite equal improvements in tendon size after moderate and heavy load resistance training, only heavy. load training seemed to maintain tendon mechanical properties in old age. The effect of load magnitude on tendon biomechanics was unrelated to changes of major load bearing matrix components in the tendon core.The study is a sub-study of the LISA study, which was registered at http://clinicaltrials.gov (NCT02123641) April 25th 2014.

Highlights

  • Regular loading of tendons may counteract the negative effects of aging

  • Our results show a more blunted response of the muscle-tendon unit to training compared to previous studies but confirm that heavy load training is superior with regards to inducing favorable mechanical and material adaptations of the patellar tendon

  • The analysis showed no correlations between enzymatic cross-links and tendon mechanical properties in our group of older adults, which corroborate previous human and animal studies [30, 62, 63] and suggests that enzymatic cross-links play a limited role in the adaptation of tendon biomechanics after maturity

Read more

Summary

Introduction

Regular loading of tendons may counteract the negative effects of aging. The influence of strength training loading magnitude on tendon mechanical properties and its relation to matrix collagen content and collagen cross-linking is sparsely described in older adults. The purpose of the present study was to compare the effects of moderate or high load resistance training on tendon matrix and its mechanical properties. Regular loading of tendons seems to protect the tissue from the negative effects of aging [7, 8] by increasing tensile stiffness [9,10,11]. The knowledge about training duration and the magnitude of load needed to induce favorable adaptations in tendons of older adults is limited. The relation between tendon mechanical properties and molecular changes in the matrix is largely unresolved

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call