Abstract
In order to study the dynamic force identification method of an end-plate pick of shearer, a dynamic force identification technique based on interval theory was proposed. The dynamic force interval identification model is established by describing and quantifying the identified parameters. By using the interval analysis method of the first-order Taylor expansion, the dynamic force identification is transformed into two kinds of deterministic inverse problems at the midpoint of the uncertain parameter and its gradient identification. The Tikhonov regularization method is used to solve two kinds of deterministic problems, and the upper and lower boundaries of dynamic force of the end-plate pick are determined. The results show that the deviations between the identified dynamic force and the actual dynamic force are basically within 2% and 5%, and the average uncertainties are up to 7% and 10%. Therefore, the proposed method can effectively determine the upper and lower boundaries of dynamic force of the end-plate pick, improve the solving efficiency, and provide a new research method for studying the coal rock mechanism of the pick cutting load.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.