Abstract

For many applications, direct measurement of forces in mechanical systems is difficult or even impossible, and indirect measurement involving inverse analysis must be adopted. One such application of major industrial relevance is the accurate measurement of contact forces acting on rolling bodies. In this paper, a newly proposed strategy for load identification is applied to an example problem of a rolling disc. Based on strain gauge measurements, the contact force is estimated using finite element analysis. A virtual calibration procedure is introduced in order to reduce the dependency of the results on the spatial discretization. In particular, the sensitivity of the results with respect to finite element discretization, sensor placement and noise is discussed. Numerical results based on synthetic data illustrate the behavior and accuracy of the proposed strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.