Abstract

Advances in power electronics have improved grid support functions such as tie-line power control and frequency control, making renewable generation and High Voltage DC (HVDC) links more common in power system applications. Load Frequency Control (LFC) systems handle the complex interactions between the distributed generator and the control area with the HVDC link. In this work, LFC of a two-zone system including parallel AC/DC transmission links has been analysed. The parameters of this system are optimised using advanced genetic algorithm resulting in improved performance of system in terms of reduction in peak overshoots and settling time of frequency measurement, tie line power flow and area control error signals in an interconnected power system. The advantage of having parallel HVDC links is also demonstrated when performance is compared to system interconnected with only AC tie line.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.