Abstract

This study proposes a generalised Hopfield neural network (GHNN) for solving non-linear load flow equations. The proposed method was formulated with appropriate energy function for performing load flow analysis of n -bus system. The intended method has the advantages of simple to use, more general application, faster convergence and better optimal solution over the conventional method of load flow using Newton-Raphson (NR) technique. The proposed method of GHNN has been used to solve the power flow equation by calculating the power mismatches and this constraint is used to formulate the energy function of Hopfield neural network (HNN). This energy function is used to derive the weights and bias values of the network. The optimal solution can be found, based on the minimisation of the energy function of continuous HNN. The suggested method was tested in a typical 3-bus and 5-bus power system. The mathematical equation of the proposed method was coded using Matlab/R2014a software. The simulation results obtained have shown that the proposed method is more efficient than NR method in terms of reduction in computational complexity and convergence time with minimum number of iterations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.