Abstract
The distribution system acts as a conduit between the consumer and the bulk power grid. Due to characteristics such as a high resistance/reactance ratio, distribution networks cannot be solved using conventional methods, such as the Gauss-Seidel and NewtonāRaphson. This research proposes a method for the calculation of the power flow in radial networks that considers their wide range of resistance and reactance values, PV generator characteristics, and radial structure. An iterative methodology is employed, with each iteration beginning with the branch that has the highest accurate power flow solution. The procedure is reliable and effective over various workloads and network configurations. To confirm the effectiveness of the suggested technique on the simple and IEEE 33-bus radial distribution system, simulations were carried out in MATLAB. The implications of including a renewable energy source, such as a PV generator, in the network under consideration are investigated by simulation result comparison. The optimal location of the PV generator was also determined using an Artificial Neural Network (ANN) controller. The results of the identification process improve the already exceptional efficacy and performance of the ANN controller.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering, Technology & Applied Science Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.