Abstract

Automated truck platooning (ATP) has gained growing attention due to its advantage in reducing fuel consumption and carbon emissions. However, it poses serious challenges to highway bridges due to the load effect of multiple closely spaced heavy-duty trucks on the bridge. In China, ATP also has great application prospects in the massive and ever-increasing highway freight market. Therefore, the load effects of ATP on bridges need to be thoroughly investigated. In this study, typical Chinese highway bridges and trucks were adopted. ATP load models were designed according to the current Chinese road traffic regulations. The load effects of ATP on highway bridges were calculated using the influence line method and evaluated based on the Chinese bridge design specifications. Results show that the load effect of ATP on bridges increases with the increase in the gross vehicle mass and the truck platooning size but decreases with the increasing inter-truck spacing and the critical wheelbase. The Grade-I (best quality standard) highway bridges are generally capable of withstanding the ATP loads, while caution should be exercised for other bridges. Strategies for preventing serious adverse impacts of ATP load on highway bridges are proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.