Abstract

Obtaining the load distribution and radial deformations of planetary roller screw mechanism (PRSM) for the load carrying capacity design under complex loading conditions (multi-directional loads) is beneficial to decelerate fatigue and wear of threads. However, the combined effects of axial load, radial load and turning torque (overturning moment) were ignored in previous studies due to the complicated structure of PRSM. This paper presents a multi-roller beam-bar-spring (MR-BBS) model that incorporate radial load, turning torque and thread modification. The proposed model extended the theoretic method for calculating bending behavior of screw and rollers, which can more precisely describe the locus of the threads and roller axis. The load distribution of threads and load sharing among rollers of a PRSM under different external loads and cycling process are analyzed. The results show that the load distribution is more sensitive to turning torque of screw but relatively insensitive to the radial load. Moreover, the load distribution moderately changes with the variation of modification factor. Based on thread modification, the variable lead PRSM is proposed so that the uniformity of load sharing with complex load can be optimized. Highlights A multi-roller beam-bar-spring (MR-BBS) model is developed that incorporate axial load, radial load, turning torque and thread modification. The load distribution of threads and load sharing among rollers of a PRSM under different external loads and cycling process are analyzed. The load distribution is more sensitive to turning torque of screw but relatively insensitive to the radial load. The variable lead PRSM is proposed so that the uniformity of load sharing with complex load can be optimized.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.