Abstract
Increased load bearing across the patellofemoral and tibiofemoral articulations has been associated with total knee arthroplasty (TKA) complications. Therefore, the purpose of this study was to quantify the biomechanical characteristics of the patellofemoral and tibiofemoral joints and simulate varying weight-bearing demands after posterior cruciate ligament-retaining (CR) and posterior-stabilized (PS) TKAs. Eight fresh-frozen cadaveric knees (average age, 68.4 years; range, 40-86 years) were tested using a custom knee system with muscle-loading capabilities. The TKA knees were tested with a CR and then a PS TKA implant and were loaded at 6 different flexion angles from 15° to 90° with progressively increasing loads. The independent variables were the implant types (CR and PS TKA), progressively increased loading, and knee flexion angle (KFA). The dependent variables were the patellofemoral and tibiofemoral kinematics and contact characteristics. The results showed that at higher KFAs, the position of the femur translated significantly more posterior in CR implants than in PS implants (36.6 ± 5.2 mm and 32.5 ± 5.7 mm, respectively). The patellofemoral contact force and contact area were significantly greater in PS than in CR implants at higher KFAs and loads (102.4 ± 12.5 N and 88.1 ± 10.9 N, respectively). Lastly, the tibiofemoral contact force was significantly greater in the CR than the PS implant at flexion angles of 45°, 60°, 75°, and 90° KFA, the average at these flexion angles for all loads tested being 246.1 ± 42.1 N and 192.8 ± 54.8 N for CR and PS implants, respectively. In this biomechanical study, CR TKAs showed less patellofemoral contact force, but more tibiofemoral contact force than PS TKAs. For higher loads across the joint and at increased flexion angles, there was significantly more posterior femur translation in the CR design with a preserved posterior cruciate ligament and therefore significantly less patellofemoral contact area and force than in the PS design. The different effects of loading on implants are an important consideration for physicians as patients with higher load demands should consider the significantly greater patellofemoral contact force and area of the PS over the CR design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.