Abstract

Pultruded fiber-reinforced polymers have been increasingly applied in engineering structures, and previous studies have focused on their axial behaviors. However, the axial load borne by the components of engineering structures is not ideal. This study presents an investigation of the behavior of I-section pultruded glass fiber-reinforced polymer (GFRP) columns subjected to eccentric loads via experiments and finite element analysis. The effects of load eccentricity around the major axis, as well as the slenderness ratio on the load-carrying capacity, were investigated. The results show that the load-carrying capacity of the GFRP column is dominated by column buckling followed by material crushing, and an increase in the eccentricity and slenderness ratio causes a decrease in the load-carrying capacity, with a progressive rate of decrease. The load-carrying capacity reduction coefficient was fitted considering the slenderness ratio and eccentricity within the scope of this study. The coefficient of determination (R2) for the fitted formula was 0.86. This study provides valuable references for designers in this field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.