Abstract

Recently, because of rapid advances in electrical vehicles, unmanned air vehicles, and humanoid mobile robots, structural energy storage devices with a concurrent capability to store electrochemical energy and to support mechanical loads have been in the spotlight. However, a big hurdle to realizing an integrated electro-chemo-mechanical system is to develop highly compatible active electrodes and structural electrolytes with superior mechanical strength and electrochemical functionality while retaining light weight. We report a load-bearing structural supercapacitor by utilizing a bicontinuous PEO-b-P(S-co-DVB) structural electrolyte and carbon-coated Ni-Co nanowires grown on carbon fiber woven fabric. A liquid polymerization mixture between the electrodes is transformed into a solid-state block copolymer electrolyte, preserving conformal contact with the nanostructured electrode surface. The polymerization-induced microphase separation produces a bicontinuous morphology of cross-linked hard domain and liquid-like conductive domain in the electrode, providing high modulus and high conductivity. The resulting structural supercapacitor is able to operate under tensile and even bending load, suggesting its wide potential applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.