Abstract
This paper studies the delay-optimal virtual machine (VM) scheduling problem in cloud computing systems, which have a constant amount of infrastructure resources such as CPU, memory and storage in the resource pool. The cloud computing system provides VMs as services to users. Cloud users request various types of VMs randomly over time and the requested VM-hosting durations vary vastly. A multi-level queue scheduling algorithm partitions the ready queue into several separate queues. The processes are permanently assigned to one queue, generally based on some property of the process, such as memory size, process priority or process type. Each queue has its own scheduling algorithm. Similarly, a process that waits too long in a lower-priority queue may be moved to a higher-priority queue. Multi-level queue scheduling is performed via the use of the Particle Swarm Optimization algorithm (MQPSO). It checks both Shortest-Job-First (SJF) buffering and Min-Min Best Fit (MMBF) scheduling algorithms, i.e., SJF-MMBF, is proposed to determine the solutions. Another scheme that combines the SJF buffering and Extreme Learning Machine (ELM)-based scheduling algorithms, i.e., SJF- ELM, is further proposed to avoid the potential of job starva¬tion in SJF-MMBF. In addition, there must be scheduling among the queues, which is commonly implemented as fixed-priority preemptive scheduling. The simulation results also illustrate that SJF- ELM is optimal in a heavy-loaded and highly dynamic environment and it is efficient in provisioning the average job hosting rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Scientific Research in Computer Science, Engineering and Information Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.