Abstract

This paper first identifies some of the key concerns about the techniques and algorithms developed for parallel model checking; specifically, the inherent problem with load balancing and large queue sizes resultant in a static partition algorithm. This paper then presents a load balancing algorithm to improve the run time performance in distributed model checking, reduce maximum queue size, and reduce the number of states expanded before error discovery. The load balancing algorithm is based on generalized dimension exchange (GDE). This paper presents an empirical analysis of the GDE based load balancing algorithm on three different supercomputing architectures—distributed memory clusters, Networks of Workstations (NOW) and shared memory machines. The analysis shows increased speedup, lower maximum queue sizes and fewer total states explored before error discovery on each of the architectures. Finally, this paper presents a study of the communication overhead incurred by using the load balancing algorithm, which although significant, does not offset performance gains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.