Abstract
In the complex and ever-changing manufacturing environment, maintaining the long-term steady and efficient work of the assembly line is the ultimate goal pursued by relevant enterprises, the foundation of which is a balanced load. Therefore, this paper carries out research on the two-sided assembly line balance problem (TALBP) for load balancing. At first, a mathematical programming model is established with the objectives of optimizing the line efficiency, smoothness index, and completion time smoothness index of the two-sided assembly line (TAL). Secondly, a deep reinforcement learning algorithm combining distributed proximal policy optimization (DPPO) and the convolutional neural network (CNN) is proposed. Based on the distributed reinforcement learning agent structure assisted by the marker layer, the task assignment states of the two-sided assembly and decisions of selecting tasks are defined. Task assignment logic and reward function are designed according to the optimization objectives to guide task selection and assignment. Finally, the performance of the proposed algorithm is verified on the benchmark problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.