Abstract

AbstractMobile IP (MIP) requires mobile nodes (MNs) to register with the home agents (HAs) whenever the MNs change their point of attachment (PoA: access point (AP) or base station (BS)) in different subnets. Thus, such registrations cause excessive signaling overhead and long service delay. To solve this problem, proxy mobile IPv6 (PMIPv6) has been proposed by the IETF NETLMM working group. In PMIPv6, a new entity called mobile access gateway (MAG) performs the mobility‐related signaling with the local mobility anchor (LMA) on behalf of the MN and establishes a tunnel with the LMA. However, a number of MNs must be associated with an MAG, which means that the MAG can be easily overloaded. Therefore, in this paper, we propose a load balancing mechanism among the MAGs in the PMIPv6 network. The PMIPv6 handover signaling procedure is extended to support the proposed load balancing mechanism. We also discuss using IEEE 802.21 Media Independent Handover (MIH) protocol for load balancing to determine the load status at the candidate PoAs, in addition to the load status at the candidate MAGs. To evaluate the performance, we analyze the average waiting time in the queue at the MAG. Through simulations and numerical analysis, we show that the proposed load balancing mechanism can produce less queueing delay at the MAG and a higher data transmission rate at the PoA than when a load balancing operation is not performed in the PMIPv6 network. Copyright © 2009 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.