Abstract
Cloud-Fog environment is useful in offering optimized services to customers in their daily routine tasks. With the exponential usage of IoT devices, a huge scale of data is generated. Different service providers use optimization scheduling approaches to optimally allocate the scarce resources in the Fog computing environment to meet job deadlines. This study introduces the Whale-EarthWorm Optimization method (WEOA), a powerful hybrid optimization method for improving resource management in the Cloud-Fog environment. Striking a balance between exploration and exploitation of these approaches is difficult, if only Earthworm or Whale optimization methods are used. Earthworm technique can result in inefficiency due to its investigations and additional overhead, whereas Whale algorithm, may leave scope for improvement in finding the optimal solutions using its exploitation. This research introduces an efficient task allocation method as a novel load balancer. It leverages an enhanced exploration phase inspired by the Earthworm algorithm and an improved exploitation phase inspired by the Whale algorithm to manage the optimization process. It shows a notable performance enhancement, with a 6% reduction in response time, a 2% decrease in cost, and a 2% improvement in makespan over EEOA. Furthermore, when compared to other approaches like h-DEWOA, CSDEO, CSPSO, and BLEMO, the proposed method achieves remarkable results, with response time reductions of up to 82%, cost reductions of up to 75%, and makespan improvements of up to 80%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal on Recent and Innovation Trends in Computing and Communication
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.