Abstract

Shallow foundation designs are typically governed either by settlement, a serviceability limit state, or by bearing capacity, an ultimate limit state. While geotechnical engineers have been designing against these limit states for over half a century, it is only recently that they have begun to migrate towards reliability-based designs. At the moment, reliability-based design codes are generally derived through calibration with traditional working stress designs. To take advantage of the full potential of reliability-based design the profession must go beyond calibration and take geotechnical uncertainties into account in a rational fashion. This paper proposes a load and resistance factor design (LRFD) approach for the bearing capacity design of a strip footing, using load factors as specified by structural codes. The resistance factors required to achieve an acceptable failure probability are estimated as a function of the spatial variability of the soil and by the level of “understanding” of the soil properties in the vicinity of the foundation. The analytical results, validated by simulation, are primarily intended to aid in the development of the next generation of reliability-based geotechnical design codes, but can also be used to assess the reliability of current designs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.