Abstract

This paper reports the results of load and resistance factor design (LRFD) calibration for pullout and yield limit states for steel grid reinforced soil walls owing to soil self-weight loading plus permanent uniform surcharge. The calibration method uses bias statistics to account for prediction accuracy of the underlying deterministic models for reinforcement load, pullout capacity and yield strength of the steel grids, and random variability in input parameters. A new revised pullout design model is proposed to improve pullout resistance prediction accuracy and to remove hidden dependency with calculated pullout resistance values. Load and resistance factors are proposed that give a uniform probability of failure of 1% for both pullout and yield limit states. The approach adopted in this paper has application to a wide variety of other reinforced soil wall technologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call