Abstract
We examine the high-speed flow of pressurized gases between non-concentric cylinders where the inner cylinder rotates at constant speed while the outer cylinder is stationary. The flow is taken to be steady, two-dimensional, compressible, laminar, single phase and governed by a Reynolds lubrication equation. Approximations for the lubricating force and friction loss are derived using a perturbation expansion for large speed numbers. The present theory is valid for general Navier–Stokes fluids at nearly all states corresponding to ideal, dense and supercritical gases. Results of interest include the observation that pressurization gives rise to large increases in the lubricating force and decreases in the fluid friction. The lubrication force is found to scale with the bulk modulus. Within the context of the Reynolds equation an exact relation between total heat transfer and power loss is developed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.