Abstract

The Ease of Language Understanding model (Rönnberg et al., 2013) predicts that decreasing the distinctness of language stimuli increases working memory load; in the speech domain this notion is supported by empirical evidence. Our aim was to determine whether such an over-additive interaction can be generalized to sign processing in sign-naïve individuals and whether it is modulated by experience of computer gaming. Twenty young adults with no knowledge of sign language performed an n-back working memory task based on manual gestures lexicalized in sign language; the visual resolution of the signs and working memory load were manipulated. Performance was poorer when load was high and resolution was low. These two effects interacted over-additively, demonstrating that reducing the resolution of signed stimuli increases working memory load when there is no pre-existing semantic representation. This suggests that load and distinctness are handled by a shared amodal mechanism which can be revealed empirically when stimuli are degraded and load is high, even without pre-existing semantic representation. There was some evidence that the mechanism is influenced by computer gaming experience. Future work should explore how the shared mechanism is influenced by pre-existing semantic representation and sensory factors together with computer gaming experience.

Highlights

  • Working memory is the ability to keep information in mind for a limited period of time while processing it (Baddeley, 2012)

  • There was a significant interaction between these two factors, F(4,76) = 3.05, MSE = 0.26, p = 0.02, η2p = 0.14. Investigation of this interaction, using separate analysis of variance (ANOVA) for each of the two memory load levels, revealed that the mean difference (MD) between R1 and R5 was statistically significant at both load levels, high: MD = 1.49, p < 0.001; low: MD = 0.92, p < 0.001

  • Notwithstanding, we found evidence to suggest that the individuals who stated that they played computer games were less affected by increasing levels of stimulus degradation when working memory load was high

Read more

Summary

Introduction

Working memory is the ability to keep information in mind for a limited period of time while processing it (Baddeley, 2012). There is a close connection between working memory and communication which builds on the need to maintain and process information during receptive and productive language processing (Majerus, 2013) and in many ways, the functionality of working memory seems to be adapted to communication needs (Baddeley et al, 1998). Beyond linguistic aspects, working memory is influenced by memory load, operationalized either as how many, or how long, items need to be maintained, as well as the distinctness of the presented items, or how difficult it is to perceive them (Barch et al, 1997). Computerized training can modulate the effect of increased working memory load (Dahlin et al, 2008) and videogaming can improve

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.