Abstract

We define and study LNL polycategories, which abstract the judgmental structure of classical linear logic with exponentials. Many existing structures can be represented as LNL polycategories, including LNL adjunctions, linear exponential comonads, LNL multicategories, IL-indexed categories, linearly distributive categories with storage, commutative and strong monads, CBPV-structures, models of polarized calculi, Freyd-categories, and skew multicategories, as well as ordinary cartesian, symmetric, and planar multicategories and monoidal categories, symmetric polycategories, and linearly distributive and *-autonomous categories. To study such classes of structures uniformly, we define a notion of LNL doctrine, such that each of these classes of structures can be identified with the algebras for some such doctrine. We show that free algebras for LNL doctrines can be presented by a sequent calculus, and that every morphism of doctrines induces an adjunction between their 2-categories of algebras.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.