Abstract
Glioma is the most common malignant brain tumour in adults, and the aetiology and mechanism of this tumour remain largely unknown. Previous studies have demonstrated that the long non-coding RNA X-inactive specific transcript (XIST) is upregulated in many cancers, and a high expression level of XIST is associated with poor clinical outcome. In the present study, the expression and function of XIST were investigated in the glioma cell line U251. XIST and microRNA (miR)-133a levels in glioma cell lines were detected by reverse transcription-quantitative polymerase chain reaction. Small hairpin RNA XIST (sh-XIST) and mimics/inhibitor of miR-133a were transfected in glioma cell lines and cell proliferation, invasion, migration and epithelial-mesenchymal transition (EMT) were examined. Luciferase assays were used to verify the associations among XIST, miR-133a and SRY-box (SOX)4. When XIST was knocked down, the proliferation, metastasis and EMT of glioma cells decreased. Notably, downstream genes of SOX4 were also upregulated or downregulated upon sh-XIST treatment. Overexpression of miR-133a inhibited glioma proliferation, metastasis and EMT via reducing the expression of SOX4; in contrast, knockdown of miR-133a exhibited the opposite effect, which revealed that miR-133a negatively regulates glioma progression. Furthermore, using luciferase assays, it was demonstrated that XIST and SOX4 could bind miR-133a in the predicted binding site; XIST competed with SOX4 for miR-133a binding. In conclusion, a XIST/miR-133a/SOX4 axis and a mechanism of XIST glioma in promoting cell proliferation and metastasis were revealed. These findings revealed that XIST has an oncogenic role in the tumourigenesis of glioma and may serve as a potential therapeutic target for glioma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.