Abstract

This study was aimed at determining the roles and functions of lncRNA XIST/miR-545-3p/G3BP2 axis during hypoxia/reoxygenation (H/R)-induced H9C2 cell apoptosis. H9C2 cells were distributed into two groups, the H/R injury and control groups. High-throughput lncRNA sequencing was applied in the determination of differentially expressed lncRNAs between H/R-induced H9C2 cells and normal H9C2 cells. Real-time polymerase chain reactions (RT-PCR) were used to confirm the expression levels of lncRNA XIST in H/R-induced H9C2 cells. H9C2 cells were then transfected with lncRNA XIST recombinant plasmid (lncRNA XIST), sh-LINC XIST, agomiR-545-3p, antagomiR-545-3p, pcDNA-G3BP2, sh-G3BP2, and a corresponding negative control (NC). Bioinformatic analyses revealed that MiR-545-3p was a target for lncRNA XIST. This finding was confirmed by dual-luciferase reporter assay. The degree of cell apoptosis was evaluated by a flow cytometer. RT-PCR and western blot were performed to assess the apoptotic-related proteins in each group. A total of 859 differentially expressed lncRNAs (up-regulated=502, down-regulated=357) were identified. LncRNA XIST was found to be down-regulated in H/R-induced H9C2 cells while miR-545-3p was distinctly up-regulated. miR-545-3p was established to be a direct target for LncRNA XIST. LncRNA XIST significantly enhanced the apoptotic rate, while its inhibition suppressed the apoptotic rate. AgomiR-545-3p partially blocked the lncRNA XIST and enhanced the apoptosis of H/R-induced H9C2 cells. Moreover, miR-545-3p was shown to be a direct target for G3BP2. The overexpression of G3BP2 partially reversed the apoptotic effects of miR-545-3p on H/R-induced H9C2 cells. lncRNA XIST/miR-545-3p/GBP2 was found to be an apoptotic regulator in H/R-induced H9C2 cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.