Abstract

Background Cardiac fibrosis is a risk factor leading to various cardiac diseases, and its mechanism has not been clarified. However, long noncoding RNA (lncRNA) can mediate the pathological process of cardiac fibrosis. Objective This study is aimed at determining the pathological role of lncRNA Vgll3 in cardiac fibrosis and explore its potential mechanism. Methods Myocardium fibroblasts (CFs) were isolated from mice and stimulated with angiotensin II (Ang-II). The expression of Vgll3 and transforming growth factor-β3 (TGF-β3) were detected by real-time fluorescence quantitative PCR (qPCR). Double luciferase reporter gene and western blot analysis (WB) were used to detect the effect of Vgll3 on TGF-β3 expression. The qPCR and WB were used to detect TGF-β3 pathway markers such as TGF-β3 and SMAD4, as well as cardiac fibrosis markers such as α-smooth muscle actin (α-SMA), fibronectin (Fn), and type I collagen (Col1). The proliferation of CFs in mice was analyzed by Cell Counting Kit-8 (CCK8) and 5-bromo-2-deoxyuracil (EdU) method. Results Upregulation of Vgll3 promoted the expression of TGF-β3 and its downstream molecules in mouse CFs, while silencing of Vgll3 inhibited the TGF-β3 pathway. Upregulation of Vgll3 significantly promoted the activation and proliferation of mouse CFs cells. It promoted the mRNA and protein levels of α-SMA, Fn, Col1, and Col3, while silencing the expression of Vgll3 had the opposite effect. The above effects of upregulation of Vgll3 were counteracted by TGF-β3 knockdown intervention. Conclusion Vgll3 can promote the activation and proliferation of CFs in mice by activating TGF-β3-related pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.