Abstract

High glucose combined with high FFAs can contribute to the unfavorable development of type 2 diabetes mellitus (T2DM) and monocytes/macrophages are important in the occurrence and development of T2DM, which is regarded as a type of low‑grade inflammation. Although our previous study demonstrated that increased expression of P2X7 receptor (P2X7R) in peripheral blood monocytes may alter the innate immune system and that long non‑coding (lnc)RNA uc.48+ was involved in diabetic neuropathic pain, the involvement of uc.48+ mediated by the P2X7R in monocyte/macrophages during T2DM has not been reported. In the present study, the effectsof uc.48+ small interference RNA (siRNA) on factors, including the mRNA and protein expression of P2X7R, apoptosis and proliferation, levels of reactive oxygen species (ROS), cytokine levels, and expression of phosphorylated (p‑) extracellular signal‑regulated kinase (ERK)1/2, were examined in RAW264.7 macrophages following exposure to high glucose and high plasma free fatty acids (FFAs). After RAW264.7 cells were transfected with uc.48+ siRNA under high glucose conditions and FFAs treatment, the mRNA expression levels of uc.48+ and P2X7 receptor were detected by reverse transcription‑polymerase chain reaction. The protein mass of P2X7 receptor and ERK signaling pathway were assessed by western blotting. ROS and calcium concentrations, and culture supernatant cytokine content [tumor necrosis factor‑α, interleukin (IL)‑10, IL‑1β] were detected by fluorescent probes and ELISA respectively. Cell viability and apoptosis were determined by MTS test and flow cytometry, respectively. It was found that treatment of RAW264.7 cells with high glucose and FFAs, which exhibited increased expression of uc.48+, evoked P2X7R‑mediated immune and inflammatory responses through several means, including cytokine secretion, ROS formation, and activation of the ERK signaling pathway. The uc.48+ siRNA regulated these factors and thus influenced the course and outcome of the immune and inflammatory responses mediated by P2X7R.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.