Abstract

AimsLong non-coding RNAs (lncRNAs) play key roles in regulating multiple cancers. TTN-AS1 was reported to function in several human malignancies. However, the biological function of TTN-AS1 in colorectal cancer (CRC) has not been explored. In this study, we aimed to investigate the role and the underlying mechanisms of TTN-AS1 in CRC progression. Main methodsRT-qPCR was used to detect the expression levels of TTN-AS1, miR-376a-3p and KLF15 in colorectal cancer tissues and cells. CCK-8, colony formation, flow cytometry and transwell assays were performed to determine the cell proliferation, apoptotic rate and invasion ability. Target genes were predicted using bioinformatics methods. si-RNA and miRNA inhibitor were transfected into CRC cells to explore the underlying mechanisms. Tumor xenografts were created to confirm the function of TTN-AS-1 in vivo. Key findingsTTN-AS1 upregulation was observed both in CRC tissues and cell lines. Functional investigation showed that knockdown of TTN-AS1 inhibited CRC cell proliferation and invasion, while enhanced cell apoptosis. Bioinformatics analysis identified miR-376a-3p as a target of TTN-AS1. Transfection of miR-376a-3p inhibitor mitigated the alterations induced by TTN-AS1 knockdown. Moreover, TTN-AS1 positively regulated KLF15 via sponging miR-376a-3p. Additionally, these findings were supported by in vivo experiments. SignificanceIn conclusions, TTN-AS1 promoted CRC proliferation and invasion through miR-376a-3p/KLF15 axis. Our findings suggested that TTN-AS1 might be a potential therapeutic target in CRC treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call