Abstract

The present study aimed to examine the effects of the long non-coding (lnc)RNA expressed by tissue differentiation-inducing non-protein coding RNA (TINCR) on cervical cancer development. For this purpose, adjacent normal and cancer tissues were obtained from patients with cervical cancer and the lncRNA TINCR level was examined using reverse transcription-quantitative PCR (RT-qPCR) and in situ hybridization. The association between lncRNA TINCR and the clinicopathological characteristics and prognosis of patients with cervical cancer was also analyzed. Furthermore, the expression levels of lncRNA TINCR, miRNA-7, mTOR, hypoxia-inducible factor 1 subunit α and VEGF were measured using RT-qPCR and western blot analysis. Cell proliferation, apoptosis, and invasion and migration were examined using MTT assay, 5-ethynyl-2'-deoxyuridine staining, flow cytometry, TUNEL assay, and Transwell and wound healing assays. The association between lncRNA TINCR, miRNA-7 and mTOR was also examined using a luciferase assay. The results revealed that the lncRNA TINCR level was significantly increased in cervical cancer tissues and was associated with the overall survival of patients (low vs. high expression group; P=0.0391). LncRNA TINCR was also associated with the clinicopathological characteristics of patients with cervical cancer. Following the knockdown of lncRNA TINCR using small interfering (si)RNA, cell proliferation was significantly decreased and cell apoptosis was significantly increased (P<0.001 for both); cell invasion and migration were also significantly decreased (P<0.001 for both) following transfection with mimics miRNA-7. Transfection with miRNA-7 antisense oligonucleotide decreased the antitumor effects of si-TINCR in Siha and HeLa cell lines. As shown using the dual-luciferase assay, lncRNA TINCR could target miRNA-7 and miRNA-7 could directly regulate mTOR in HeLa and SiHa cell lines. In conclusion, the present study demonstrated that lncRNA TINCR could promote cervical cancer development via regulation of the miRNA-7/mTOR axis in vitro.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call