Abstract

Endometrial receptivity is critical for the successful establishment of pregnancy in ruminants. Interferon tau (IFNT) plays a key role in promoting embryo attachment by activating the Janus kinase/signal transducer and activator of transcription pathway, which induces the expression of a series of interferon-stimulated genes (ISGs). In our previous study, sequencing analysis of goat endometrial epithelial cells (gEECs) treated with 20 ng/mL IFNT revealed a differentially expressed long non-coding RNA located on the STAT3 antisense chain, which we designated STAT3-AS. The aim of this study was to investigate the role and mechanism of STAT3-AS in establishing endometrial receptivity in goats. The results showed that STAT3-AS was expressed in both the nucleus and cytoplasm of gEECs, and its expression increased significantly in the uterus on day 15 of pregnancy. STAT3-AS expression was upregulated in gEECs treated with IFNT alone or in combination with progesterone and estradiol. Knockdown of STAT3-AS using specific short interfering RNA significantly inhibited the expression of classical ISGs such as interferon-stimulated gene 15 and 2′,5′-oligodenylate synthetase 2, as well as uterine endometrial receptivity-related genes including homeobox gene A11, integrin beta 3, and vascular endothelial growth factor. Moreover, gEEC proliferation and the STAT3 pathway were suppressed in the absence of STAT3-AS. However, pretreatment with the STAT3 activator RO8191 restored the effect of silencing STAT3-AS on endometrial receptivity. Overall, these results suggest that STAT3-AS is an important regulator of endometrial receptivity in goats and that it regulates endometrial receptivity through the STAT3 pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call