Abstract

Beryllium and its compounds are carcinogenicity, but the mechanisms through which this occurs have yet to be clarified. Accumulating evidence exists that long noncoding RNAs (lncRNAs) play an important role in occurrence and development of cancer. To explore the carcinogenic mechanism of beryllium, human bronchial epithelial cells (16HBE) were treated with 50 μM beryllium sulfate (BeSO4) for 45 passages (~23weeks). The expression levels of lncRNA SNHG7, SNHG11, SNHG15, MIR22HG, GMPS, and SIK1 were detected at passage 0 (P0), 15 (P15), 25 (P25), 35 (P35), and 45 (P45). The results indicated that enhanced cell proliferation, extensive clones in soft agar, protein expressions of up-regulated matrix metalloproteinase 9 (MMP9), matrix metalloproteinase 2 (MMP2), proliferating cell nuclear antigen (PCNA), cyclin D1, and down-regulated p53 were all observed at the 45th passage in 16HBE cells. Thus, BeSO4-transformed 16HBE cells (T-16HBE) were established. Meanwhile, the study found that the expression of lncRNA SNHG11 was elevated during malignant transformation. Knockdown of SNHG11 in T-16HBE cells blocked cell proliferation, invasion, and migration, and decreased the protein levels of MMP9, MMP2, PCNA, cyclin D1, but increased p53. The studies revealed that SNHG11 acts as an oncogene in the malignant transformation of 16HBE cells induced by BeSO4, which signifies progress in the study of the carcinogenic mechanism of beryllium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call