Abstract

Background: Hypoxic brain injury is one of the major causes of neurodevelopmental impairment and cardiovascular disability. LncRNA SNHG1 works as a critical factor in hypoxic induced injury, however, the potential mechanism is still not known well.Methods: The expression level of small nucleolar RNA host gene 1 (SNHG1) and miR-140-5p was detected by qRT-PCR. The western blot assay was performed to measure the level of Bcl-XL and apoptosis-related proteins. The target relationship between lncRNA SNHG1 and miR-140-5p, as well as miR-140-5p and Bcl-XL was detected by dual luciferase reporter gene assay. Cell apoptosis was assessed using Annexin V/PI staining by flow cytometry. Cell viability was analyzed by MTT assay.Results: Oxygen glucose deprivation (OGD) treatment inhibited SNHG1 and Bcl-XL expression and enhanced miR-140-5p expression. OGD treatment-induced cell viability inhibition, cell apoptosis promotion were partially abrogated when SH-SY5Y cells were transfected with pcDNA3.1-SNHG1 or miR-140-5p inhibitor. Moreover, luciferase reporter assay revealed that lncRNA SNHG1 bound directly to miR-140-5p, and miR-140-5p directly targeted Bcl-XL. The protective effect of SNHG1 overexpressing on cell apoptosis induced by OGD was attenuated after transfected with miR-140-5p mimic or sh-Bcl-XL in SH-SY5Y cells.Conclusion: LncRNA SNHG1-modulated miR-140-5p inhibition regulates Bcl-XL expression, thereby reducing cell apoptosis and recovering cell viability of SH-SY5Y cells. The results in this study provide novel insight into the mechanism of SNHG1 mediated signaling pathway during hypoxic brain injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call