Abstract

AimsCurrent study aimed to investigate the effects of lncRNA SNHG1 on osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and explore the underlying mechanisms. Main methodsMouse model of osteoporosis was created by ovariectomy (OVX). The BMD of mice spine, the serum level of β-CTX and the ALP activity were measured. The expression of SNHG1, JNK, p-JNK, p-38, p-p38 and Osterix were examined by qRT-PCR and Western blot. Co-IP assay was used to verify the effect of SNHG1 on the interaction between p-p38 and Nedd4. Ubiquitination assay was used to evaluate the roles of SNHG1 in ubiquitination of p-p38. Key findingsIn the mice with osteoporosis, BMD was decreased and β-CTX concentration and SNHG1 expression were increased. ALP activity and p-p38 protein level were elevated and SNHG1 expression was down-regulated in BMSCs stimulated by osteogenic inducer, while the effects were reversed by SNHG1 over-expression. SNHG1 over-expression enhanced the interaction between Nedd4 and p-p38, disrupted protein stability of p-p38, and promoted the ubiquitination of p-p38. In addition, pcDNA-SNHG1 down-regulated p-p38 protein level, and sh-Nedd4 removed the trend. Nedd4 silencing elevated ALP activity and Osterix protein level, while p-38 inhibitor abrogated the effects. In vivo, SNHG1 silence increased BMD and Osterix protein level, and decreased endogenous SNHG1 expression in mice with OVX. SignificanceThis study proved the regulation mechanism that lncRNA SNHG1 negatively regulates p38 MAPK signal pathway through ubiquitination mediated by Nedd4, and thus inhibits osteogenic differentiation of BMSCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.