Abstract

Background: Non-small cell lung cancer (NSCLC) consists of a class of heterogeneous diseases. Objective: LncRNAs are exceedingly implicated in the pathogenesis of NSCLC. Herein, the current study set out to illustrate the molecular mechanism of SH3BP5-AS1 in NSCLC cells. Methods: SH3BP5-AS1 expression in clinical NSCLC tissues and its impact on prognosis were analyzed by bioinformatics database. SH3BP5-AS1 expression patterns in NSCLC cell lines (A549/H1299/H1975/H460) and human normal lung epithelial cell lines (BEAS-2B) were examined by RT-qPCR. SH3BP5-AS1 was overexpressed in A549 or silenced in H1975 cells through transfection to assess its effect on proliferation, cell cycle distribution, and apoptosis, apoptosisrelated protein (Cleaved Caspase-3, Bax, Bcl-2) levels, invasive, migratory, and healing capacity through CCK-8, colony formation assay, flow cytometry, Western blot, Transwell, and cell scratch test. Results: SH3BP5-AS1 was under-expressed in NSCLC clinical tissues, and NSCLC patients with low SH3BP5-AS1 expression showed poor prognosis. A549/H1299/H1975/H460 cells had reduced levels of SH3BP5-AS1, with the relative level lowest/highest expression in A549/H1975 cells, respectively. SH3BP5-AS1 overexpression repressed A549 cell proliferation, slowed down cell cycle progression, enhanced apoptosis, elevated Cleared Caspase-3, Bax, suppressed Bcl-2 protein levels, and inhibited migratory, invasive, and scratch healing capacities, while SH3BP5-AS1 silencing brought about the opposite results in H1975 cells. Conclusion: SH3BP5-AS1 could suppress NSCLC cell proliferation, slow down cell cycle progression, stimulate apoptosis, and limit invasion and migration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call