Abstract

Long noncoding RNAs (lncRNAs) are essential modulators of cancers initiation and progression via regulating gene expression and biological behaviors. LncRNA SAMD12-AS1 has been validated to promote the progression of several cancers, while its role in gastric cancer (GC) remains unclear. This study aims to explore the role of LncRNA SAMD12-AS1 in GC. qRT-PCR was performed to analyze the expression of lncRNA SAMD12-AS1 in GC tissues and cell lines, with Kaplan-Meier curve analyzing the correlation between LncRNA SAMD12-AS1 and prognosis. CCK-8 assay, and flow cytometry were applied to detect GC cells proliferation, cell cycle. Binding of RNA and proteins were detected via RNA binding protein immunoprecipitation (RIP) assay. Protein levels of oncogenesis-related genes were determined via western blotting. SAMD12-AS1 was highly up-regulated in human gastric cancer tissues and cell lines compared to their normal counterparts. High SAMD12-AS1 expression was closely related to TNM stage, and shorter survival span of patients with GC. Moreover, SAMD12-AS1 was also found to promote the oncogenic role of GC cells via inhibiting the P53 signaling pathway. Mechanistically, SAMD12-AS1 might performed its biological roles in GC via directly interacting with DNMT1 and facilitating DNMT1 repress the P53 signaling pathway. Our study demonstrated that SAMD12-AS1 promoted GC progression via DNMT1/P53 axis, indicating SAMD12-AS1 may be envisioned as a novel biomarker of, and therapeutic target for GC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.