Abstract

Background The durative endoplasmic reticulum stress (ERS) and subsequent apoptosis contributes to the development and progression of Alzheimer’s disease (AD). MiR-326 can reduce pyruvate kinase M2 (PKM2) expression, leading to ERS. Whereas, lncRNA RPPH1 is able to increase dendritic spine density and protect hippocampal pyramidal neurons through targeting miR-326. Our study aims to investigate the regulation of lncRNA RPPH1 and miR-326/PKM2 on ERS and related apoptosis in AD. Methods SH-SY5Y cells treated with Aβ25-35 were selected as an in vitro AD model. RPPH1 and miR-326 overexpression and silencing cells were established by transforming vectors. The expression of RPPH1 and miR-326 were detected by qRT-PCR. MTT, flow cytometric, intracellular calcium assay and Western blot were used to test the functions of RPPH1 and miR-326 in SH-SY5Y cell proliferation, apoptosis and ERS. Dual-luciferase assay was used to detect the interaction among RPPH1, miR-326 and PKM2. Results RPPH1 overexpression enhanced the viability of SH-SY5Y cells, and attenuated the apoptosis of of SH-SY5Y cells. Moreover, RPPH1 overexpression down-regulated ER stress related proteins such as GRP78, CHOP and cleaved caspase-12. Mechanistically, RPPH1 directly targeted miR-326, thereby counteracting its inhibitory effect on PKM2 expression, contributing to attenuation of apoptosis and ERS induced by Aβ25-35. Conclusion Aβ25-35-induced ERS and apoptosis in SH-SY5Y cells can be attenuated by lncRNA RPPH1 through regulating miR-326/PKM2 axis. This study provided therapeutic options for AD patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call