Abstract

The long noncoding RNA (lncRNA) rhabdomyosarcoma 2-associated transcript (RMST) silencing has been demonstrated to protect against ischemic brain injury in vivo and neuron injury in vitro. However, its underlying mechanisms in the progression of ischemic stroke have not been well explored. The expression of RMST in oxygen-glucose deprivation (OGD)-treated HT-22 hippocampal neuron cell line was examined using quantitative Real-Time PCR (qRT-PCR). CCK-8 cell viability and apoptotic cell detection using Annexin V-FITC and PI staining coupled with flow cytometry were performed to determine the pro-apoptotic role of RMST in HT-22 hippocampal neuron cell line. Furthermore, RNA pull-down, RNA immunoprecipitation (RIP), coimmunoprecipitation (Co-IP), chromatin immunoprecipitation (ChIP) and dual-Luciferase reporter assays were performed to determine the mechanism of RMST in OGD-induced HT-22 cell apoptosis. In the results, RMST was highly expressed in OGD-treated HT-22 cells. Altered RMST expression led to marked changes in HT-22 cell proliferation and apoptosis. Mechanistically, RMST indirectly activated p53/miR-107 signaling pathway via interacting with heterogeneous nuclear ribonucleoprotein K (hnRNPK) and fulfilled its pro-apoptotic function in HT-22 cells. In conclusion, our data indicated that the RMST/hnRNPK/p53/miR-107/Bcl2l2 axis plays an important role in regulating neuronal apoptosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call