Abstract

Myocardial ischemia-reperfusion injury (MIRI) is a pathological process characterized by cardiomyocyte death. Long noncoding RNAs (lncRNAs) have been shown to be dysregulated in the course of MIRI. Accordingly, the current study investigated the mechanism of lncRNA Rian in MIRI-induced cardiomyocyte pyroptosis. First, a murine model of MIRI was established by using the left anterior descending (LAD) coronary artery ligation method. Cardiac function and myocardial histopathological changes were evaluated by echocardiography and hematoxylin and eosin staining. Then, a cell model of MIRI was established by oxygen-glucose deprivation/reoxygenation (OGD/R), followed by analysis of NLRP3, cleaved caspase-1, and GSDMD-N levels by western blotting. The levels of IL-1β, IL-18, TNF-α, and IL-10 were measured using ELISA. LncRNA Rian, miR-17-5p, and CCND1 expression in myocardial tissues and OGD/R cells were examined using RT-qPCR. Finally, the binding relationships between Rian and miR-17-5p and miR-17-5p and CCND1 were validated with the help of dual-luciferase and RNA pull-down assays. Rian was poorly expressed in MIRI mice and OGD/R cells. LncRNA Rian overexpression reduced cardiomyocyte pyroptosis in vivo and in vitro, as indicated by decreased NLRP3, cleaved caspase-1, GSDMD-N, IL-1β, IL-18, and TNF-α levels and increased IL-10 levels. Furthermore, Rian bound to miR-17-5p and promoted CCND1 transcription. Notably, miR-17-5p overexpression or CCND1 silencing reversed the inhibitory effect of Rian overexpression on cardiomyocyte pyroptosis. Collectively, our findings indicate that Rian overexpression reduces cardiomyocyte pyroptosis and alleviates MIRI through the miR-17-5p/CCND1 axis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call