Abstract

Background Psoriasis is a chronic, inflammatory skin disease. It was reported that lncRNA Non-coding RNA-activated by DNA damage (NORAD) has potential regulatory effects on skin diseases. Our previous studies found that lncRNA NORAD was highly expressed and its potential target miR-26a was down-regulated in psoriasis model mice. Here, we aimed to investigate the role of NORAD in the development of psoriasis. Methods IL-22/LPS (interleukin-22/lipopolysaccharide)-stimulated HaCaT (human immortalized keratinocytes) cell model and imiquimod-induced mouse model were established. Keratin 6 (K6), Keratin 16 (K16), Keratin 17 (K17), and Cell division cycle 6 (CDC6) levels were detected by western blot. Cell activity was detected by CCK-8, MTT, and EdU assays. Quantitative real-time PCR was performed to examine the levels of NORAD, miR-26a, CDC6, K6, K16, and K17. Haematoxylin-eosin staining was applied to observe the degree of skin thickening and hyperplasia. Fluorescence in situ hybridization detects the location of NORAD. RNA immunoprecipitation, RNA pull-down, and Luciferase test were performed to detect the interaction between NORAD and miR-26a. Results In IL-22/LPS-stimulated HaCaT cells, NORAD, CDC6, and keratinocyte proliferation-related proteins (K6, K16, and K17) were up-regulated and miR-26a was down-regulated. Cell survival and proliferation were also increased. However, the results were reversed after interference with NORAD. Also, in vitro experiments revealed that NORAD negatively regulated miR-26a. In IL-22/LPS-stimulated HaCaT cells and skin of imiquimod-induced mice, we found that lower NORAD resulted in an increase of miR-26a and a decrease of CDC6, further decreased levels of keratinocyte proliferation-related proteins (K6, K16, and K17).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call