Abstract
A major cause of oxaliplatin chemoresistance in colorectal cancer (CRC) is acquired epithelial-mesenchymal transition (EMT) in cancer cells, making the cancer cells easy to metastasis and recurrence. LncRNA Neighboring Enhancer of FOXA2 (lncRNA-NEF) has been characterized as a tumor suppressor to mediate cancer metastasis in multiple cancer types. However, whether it mediated the drug resistance remains unknown. In the present study, an oxaliplatin-resistant CRC cell line (SW620R) was established and lncRNA-NEF was obviously down-regulated in this resistant cell line. The further loss and gain-of-function studies demonstrated that this lncRNA suppressed oxaliplatin resistance as well as EMT programme in vitro and inhibited metastasis in vivo. Mechanistically, lncRNA-NEF epigenetically promoted the expression of DOK1 (Downstream of Tyrosine kinase 1), a negative regulator of MEK/ERK signaling, by disrupting DNA methyltransferases (DNMTs)-mediated DNA methylation. DOK1, in turn, induced the inactivation of MEK/ERK signaling, forming the lncRNA-NEF/DOK1/MEK/ERK regulatory axis to mediate oxaliplatin resistance in CRC. Collectively, our work reveals the critical function of lncRNA-NEF in mediating the oxaliplatin chemotherapy resistance in CRC, and provides a promising therapeutic strategy for CRC patients with oxaliplatin resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.