Abstract

ObjectiveThe present study was designed to investigate the mechanism by which lncRNA NEAT1 regulates survival and angiogenesis in oxygen-glucose deprivation (OGD)-induced brain microvascular endothelial cells (BMECs). MethodsOGD-treated BMECs were used to mimic cerebral ischaemia in vitro. The expression of lncRNA NEAT1 and miR-377 and proteins including VEGFA, SIRT1, and BCL-XL were measured by real-time quantitative PCR (qRT-PCR) and western blot, respectively. Cell viability and caspase 3 activity of BMECs under different conditions were determined using MTT and caspase activity assays, respectively. Matrigel-based angiogenesis assays were employed to evaluate the effect of lncRNA NEAT1 on angiogenesis. A dual-luciferase reporter assay was used to validate direct binding of miR-377 to putative targets. ResultsOGD exposure reduced the cell viability of BMECs. Upregulation of lncRNA NEAT1 and downregulation of miR-377 were also observed under OGD conditions. Knockdown of lncRNA NEAT1 inhibited angiogenesis and aggravated apoptosis in OGD-induced BMECs. Meanwhile, the expression level of miR-377 was upregulated while its downstream targets (VEGFA, SIRT1, and BCL-XL) were downregulated after lncRNA NEAT1 knockdown. Furthermore, miR-377 inhibited the angiogenesis and survival of OGD-induced BMECs. The expression of VEGFA, SIRT1, and BCL-XL were all attenuated by miR-377 overexpression. The dual-luciferase reporter assay proved miR-377 targeted the 3′ UTR sequences of lncRNA NEAT1, VEGFA, SIRT1, and BCL-XL. ConclusionlncRNA NEAT1 facilitated the survival and angiogenesis of OGD-induced BMECs via targeting miR-377 and promoting the expression of VEGFA, SIRT1, and BCL-XL, suggesting that lncRNA NEAT1 could be a promising target for cerebral ischaemia treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call