Abstract
Pathological angiogenesis is a critical component of diseases, such as ocular disorders, cancers, and atherosclerosis. It is usually caused by the abnormal activity of biological processes, such as cell proliferation, cell motility, immune, or inflammation response. Long noncoding RNAs (lncRNAs) have emerged as critical regulators of these biological processes. However, the role of lncRNA in diabetes mellitus-induced microvascular dysfunction is largely unknown. To elucidate whether lncRNA-myocardial infarction-associated transcript (MIAT) is involved in diabetes mellitus-induced microvascular dysfunction. Using quantitative polymerase chain reaction, we demonstrated increased expression of lncRNA-MIAT in diabetic retinas and endothelial cells cultured in high glucose medium. Visual electrophysiology examination, TUNEL staining, retinal trypsin digestion, vascular permeability assay, and in vitro studies revealed that MIAT knockdown obviously ameliorated diabetes mellitus-induced retinal microvascular dysfunction in vivo, and inhibited endothelial cell proliferation, migration, and tube formation in vitro. Bioinformatics analysis, luciferase assay, RNA immunoprecipitation, and in vitro studies revealed that MIAT functioned as a competing endogenous RNA, and formed a feedback loop with vascular endothelial growth factor and miR-150-5p to regulate endothelial cell function. This study highlights the involvement of lncRNA-MIAT in pathological angiogenesis and facilitates the development of lncRNA-directed diagnostics and therapeutics against neovascular diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.