Abstract
This study aimed to investigate the molecular mechanism underlying the fibrosis in hypertrophic cardiomyopathy (HCM). Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to measure the expression of potentially relevant microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) in patients with HCM suffering from fibrosis and patients with HCM free of fibrosis. In addition, the regulatory relationship between lncRNAs and miR-29a was studied using a luciferase assay. Subsequently, area under the receiver-operating characteristics (ROC) curve (AUC) analysis was conducted to predict the diagnostic value of myocardial infarction-associated transcript (MIAT), miR-29a, H19, and MEG3 in patients with HCM. Finally, the predicted regulatory relationship betwe en miR-29a and MIAT was validated by transfecting cells with different plasmids. miR-29a and MIAT were differently expressed between the fibrosis (+) HCM group and the fibrosis (-) HCM group, thus establishing a negative relationship between the expression of these two genes. In addition, both MIAT and miR-29a showed the ability to accurately predict the prognosis in patients with HCM. Furthermore, the luciferase activity of wild-type MIAT was evidently suppressed in cells transfected with miR-29a mimics, suggesting that the expression of miR-29a was apparently downregulated in the presence of MIAT. The results obtained in this study collectively indicated that the MIAT might be associated with the development of fibrosis (+) HCM via negatively regulating the expression of miR-29a.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.