Abstract

LncRNA myocardial infarction-associated transcript (MIAT) alleviates acute spinal cord injury (ASCI)-induced neuronal cell apoptosis, but the specific mechanism of it involved in regulating SCI progression needs further exploration. Here, a SCI rat model was established, followed by administration with adenovirus-mediated MIAT overexpression vector (Ad-MIAT) alone or together with Ad-RBFOX2 (RNA binding fox-1 homolog 2). The data indicated that MIAT overexpression promoted motor function recovery, improved morphology of injured tissues, and restrained neuron loss and cell apoptosis in SCI rats. Then, PC-12 cells were treated with H2O2 to induce cell injury. And highly expressed MIAT suppressed H2O2-caused decrease in cell viability and increase in cell apoptosis. MIAT stabilized RBFOX2 protein expression by binding to RBFOX2, thereby promoting RBFOX2-induced upregulation of anti-apoptotic MCL-1L (myeloid cell leukemia sequence 1) and reduction of pro-apoptotic MCL-1S. And silencing RBFOX2 in vitro blocked the inhibitory effect of MIAT on cell apoptosis. Moreover, MCL-1-specific steric-blocking oligonucleotides (SBOs) were used to transfer the MCL-1 pre-mRNA splicing pattern from MCL-1L to MCL-1S. SBOs reversed the protection effect of RBFOX2 overexpression on H2O2-induced cell injury. Furthermore, overexpression of MCL-1L instead of MCL-1S facilitated autophagy activation in H2O2-stimulated cells. Interestingly, co-overexpression of MIAT and RBFOX2 had a better promoting effect on SCI recovery. In conclusion, MIAT mitigated SCI by promoting RBFOX2-mediated alternative splicing of MCL-1. Our findings might provide a promising therapeutic target for SCI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call