Abstract

Age-related cataract (ARC) is regarded as the principal cause of vision impairment among the aged. The regulatory role of long noncoding RNAs (LncRNAs) in ARC remains unclear. The lncRNA maternally expressed gene 3 (MEG3) has been reported to promote ARC progression, and the underlying mechanism was further investigated in this study. Lens epithelium samples were collected to verify the expression of MEG3. Lens epithelial cells (LECs) were treated with H2O2 to mimic microenvironment of ARC in vitro. Cell viability, reactive oxygen species, and ferroptosis were evaluated during the in viro experiments. In the present work, lncRNA MEG3 was highly expressed in ARC group, compared with normal group. MEG3 was induced, cell viability and glutathione peroxidase 4 (GPX4) level were inhibited, and ferroptosis was promoted in H2O2 treated LECs. LncRNA MEG3 silence reversed the effects of H2O2 on viability and ferroptosis in LECs. Thereafter, lncRNA MEG3 was found to bind to PTBP1 for GPX4 degradation. Silencing of GPX4 reversed the regulation of lncRNA MEG3 inhibition in H2O2-treated LECs. To sum up, lncRNA MEG3 exhibited high expression in ARC. In H2O2-induced LECs, inhibition of lncRNA MEG3 accelerated cell viability and repressed ferroptosis by interaction with PTBP1 for GPX4 messenger RNA decay. Targeting lncRNA MEG3 may be a novel treatment of ARC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.