Abstract
Long non-coding RNAs (lncRNAs) are an emerging class of regulators in cancer. A lncRNA, MCM3AP-AS1, has been demonstrated as a versatile mediator in many cancers, except papillary thyroid cancer. The aim of this study is to investigate the role and mechanism of MCM3AP-AS1 in papillary thyroid cancer. Quantitative real-time PCR was used to assess the level of MCM3AP-AS1 and miR-211-5p in papillary thyroid cancer tissues and cells. Western blot was used to detect E-cadherin and secreted protein acidic and cysteine rich (SPARC) protein levels. CCK-8, scratch wound assay, and transwell assay were used to evaluate papillary thyroid cancer cell proliferation, migration, and invasion, respectively. BLAST alignment and luciferase assay were used to explore the interaction among MCM3AP-AS1, mi/r-211, and SPARC. In papillary thyroid cancer, MCM3AP-AS1 was upregulated, while miR-211 was downregulated. MCM3AP-AS1 overexpression promoted papillary thyroid cancer proliferation, migration, and invasion. Further, MCM3AP-AS1 was shown to be negatively correlated with miR-211-5p. We next validated that miR-211-5p overexpression could reverse the promoting role of MCM3AP-AS1 in papillary thyroid cancer, whereby SPARC plays an important regulating role. In vivo, we confirmed the anti-tumor role of MCM3AP-AS1 silencing and the close relation among MCM3AP-AS1, miR-211-5p, and SPARC. MCM3AP-AS1 promotes papillary thyroid cancer by regulating the MCM3AP-AS1/miR-211-5p/SPARC axis, which could potentially be a therapeutic target in papillary thyroid cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.