Abstract
It has been established that long noncoding RNAs (lncRNAs) play a crucial role in various cancer types, and there are vast numbers of long noncoding RNA transcripts that have been identified by high-throughput methods. However, the biological function of many novel aberrantly expressed lncRNAs remains poorly elucidated, especially in gastric cancer (GC). Here, we first identified a novel lncRNA termed LENGA (Low Expression Noncoding RNA in Gastric Adenocarcinoma), which was significantly downregulated in GC tissues compared to adjacent normal tissues. Next, we found that reduced expression of LENGA in GC was also associated with a shorter life expectancy. The proliferation, migration, and invasion of GC cells were increased after LENGA knockdown but restrained after LENGA overexpression in vitro and in vivo. It was further demonstrated that LENGA physically binds to BRD7 (bromodomain-containing 7) in the bromodomain domain and acts as a scaffold that enhances the interaction between BRD7 and TP53 (tumor protein p53), regulating the expression of a subset of genes in the p53 pathway, including CDKN1A (cyclin-dependent kinase inhibitor 1A) and PCDH7 (protocadherin 7), at the transcriptional level. Consistently, the expression of CDKN1A has a positive correlation with LENGA in GC patients. Taken together, this study uncovers a novel tumor suppressor lncRNA, LENGA, and describes its biological function, molecular mechanism, and clinical significance. This highlights the potential importance of targeting the LENGA/BRD7/TP53 axis in GC treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.