Abstract
One of the confounding factors in pancreatic cancer (PC) pathogenesis is hyperglycemia. The molecular mechanism by which high glucose (HG) influences PC severity is poorly understood. Our investigation delved into the impact of lncRNA highly upregulated in liver cancer (HULC) and its interaction with yes-associated protein (YAP) in regulating the fate of pancreatic ductal adenocarcinoma cells (PDAC) under HG-induced conditions. PDAC cells were cultured under normal or HG conditions. We thereafter measured the effect of HG on the viability of PDAC cells, their migration potential and drug resistance properties. The lncRNAs putatively dysregulated in PC and diabetes were shortlisted by bioinformatics analysis followed by wet lab validation of function. HG led to enhanced proliferation and drug refractoriness in PDAC cells. HULC was identified as one of the major deregulated lncRNAs following bioinformatics analysis. HULC was found to regulate the expression of the potent transcriptional regulator - YAP through selective histone modifications at the YAP promoter. siRNA-mediated ablation of HULC resulted in a concurrent decrease in YAP transcriptional activity. Importantly, HULC and YAP were found to co-operatively regulate the cellular homeostatic process autophagy, thus inculcating drug resistance and proliferative potential in PDAC cells. Moreover, inhibition of autophagy or YAP led to a decrease in HULC levels, suggesting the existence of an inter-regulatory feedback loop. We observed that HG triggers aggressive properties in PDAC cells. Mechanistically, up-regulation of lncRNA HULC resulted in activation of YAP and differential regulation of autophagy coupled to increased proliferation of PDAC cells. Inhibition of HULC and YAP may represent a novel therapeutic strategy for PDAC. Furthermore, this study portrays the intricate molecular interplay between HULC, YAP and autophagy in PDAC pathogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.