Abstract

Large bone defect reconstruction undergoes hypoxia and remains a major practical challenge. Bone tissue engineering with a more promising stem cell source facilitates the development of better therapeutic outcomes. Human dental follicle stem cells (hDFSCs) with superior multipotency, osteogenic capacity, and accessibility have been proven a promising cell source for bone regeneration. We previously identified a novel long noncoding RNA (lncRNA), HOTAIRM1, to be highly expressed in hDFSCs. Here we found that HOTAIRM1 overexpressed hDFSCs promoted bone regeneration in rat critical-size calvarial defect model. Mechanically, HOTAIRM1 was induced in hDFSCs under hypoxic conditions and activated HIF-1α. RNA-sequencing analysis indicated that HOTAIRM1 upregulated oxygen-sensing histone demethylases KDM6A/B and suppressed methyltransferase EZH2 via targeting HIF-1α. The osteogenic differentiation of hDFSCs was accompanied with demethylation of H3K27, and HOTAIRM1 overexpression decreased the distribution of H3K27me3 in osteogenic genes, including ALP, M-CSF, Wnt-3a, Wnt-5a, Wnt-7a, and β-catenin, thus promoted their transcription. Our study provided evidence that HOTAIRM1 upregulated KDM6A/B and inhibited EZH2 in a HIF-1α dependent manner to enhance the osteogenesis of hDFSCs. HOTAIRM1-mediated hDFSCs may serve as a promising therapeutic approach to promote bone regeneration in clinical practice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call