Abstract

ABSTRACT Glioblastoma multiforme (GBM) is a malignant cancer with severely poor survival, and the cells continue to thrive during hypoxia and toxic stress through autophagy. To validate the oncogenic role of long noncoding RNA H19 in GBM progression and examine whether autophagy and/or miR-491-5p participate in the process. The expression of H19 and autophagy-related genes in GBM and healthy control tissues was assessed via quantitative polymerase chain reaction. In addition, cell viability, proliferation, apoptosis and autophagy were respectively determined via cell counting kit-8 assay, clone formation assay, flow cytometry, western blotting and green fluorescent protein–microtubule-associated protein 1 light chain 3 alpha fluorescence analysis in vitro. Furthermore, a rescue assay was performed using rapamycin or miR-491-5p antagomir to examine the role of autophagy or miR-491-5p in H19-mediated regulation of proliferation and apoptosis. RNA pull-down and dual-luciferase reporter assays were employed to analyze the interaction between H19 and miR-491-5p. Additionally, tumor growth in a xenograft-bearing mouse model and autophagy in tumor mass were analyzed in vivo. The expression H19 was increased in GBM and was positively correlated with LC3 or Beclin-1. Silencing H19 inhibited growth and promoted apoptosis in GBM cells both in vitro and in vivo, and miR-491-5p was identified as one of the important mediators. H19 regulated the autophagy signaling pathway at least partly via miR-491-5p. Increased H19 expression in GBM exerts oncogenic effects by sponging miR-491-5p and enhancing autophagy. Therefore, H19 may be explored as a target for GBM therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.