Abstract

The bulk of evidence has revealed that dysregulated expression of long non-coding RNAs (lncRNAs) plays a crucial functional role in cancer biology. However, the mechanistic role of lncRNAs in the initiation, progression and immune landscape of thyroid carcinoma (THCA) still remains largely unknown. This study aimed to explore the significance of H19 in the diagnostic and immune related roles in THCA. The expression level of H19 was analyzed using the TNMplot, GSCA, UALCAN, GEPIA, Wanderer, UCSC Xena and GEO databases. Enrichment analyses were performed to investigate the possible underlying biological pathways by LinkedOmics. Moreover, cBioPortal web tool was used to analyze genetic alterations of H19. Finally, we used TIMER and GEPIA databases to explore the correlations between H19 and tumor-infiltrated immune cells and immune markers. LncRNA H19 was differentially expressed in various cancers and also remarkably downregulated in the THCA tissues compared to the normal ones. Genetic alteration analysis revealed that there was a significant correlation between alterations in H19 and overall survival of THCA patients. Furthermore, enrichment analysis indicated the functional relationship between co-expression network of H19 and extracellular structure organization, and immune microenvironment. In addition, H19 expression was positively correlated with infiltration level of diverse immune cells including CD4+T cells, CD8+T cells, B cells, dendritic cells, neutrophils and macrophages and was closely associated with multiple immune markers in THCA. Conclusively, this comprehensive study indicates the lncRNA H19 might have a significant role in the initiation and progression of THCA. Hence, our findings might provide ideas on the selection of novel diagnostic biomarkers and assist in the designing of the effective pharmaceutical targets for THCA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.