Abstract
Sepsis comprises a lethal immunologic response due to infection. Increasingly, evidence has demonstrated the important role of long non-coding RNA growth arrest-specific transcript 5 (GAS5) in the regulation of sepsis. Nevertheless, the mechanisms by which GAS5 participates in the progression of sepsis remain unclear. Our study demonstrated the role and underlying mechanism of GAS5 in regulating lipopolysaccharide (LPS)-induced inflammation. In this study, GAS5 expression was found to be markedly decreased in serum samples of sepsis patients and a sepsis mouse model, and was negatively related with HMGB1 expression. GAS5 overexpression inhibited cell inflammatory responses by decreasing HMGB1 release. Furthermore, GAS5 inhibited LPS-mediated hyperacetylation and the release of HMGB1 by increasing the expression of sirtuin1 (SIRT1). Additionally, upregulated GAS5 attenuated inflammatory responses in vitro and vivo, and the knockdown of a miR-155-5p mimic and SIRT1 rescued the effects of GAS5 upregulation. Mechanistically, GAS5 sponged miR-155-5p to upregulate SIRT1, thereby inhibiting HMGB1 acetylation and release. In conclusion, our findings indicate that GAS5 suppresses inflammatory responses by modulating the miR-155-5p/SIRT1/HMGB1 axis in sepsis, providing a novel therapeutic target for inflammation in sepsis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.